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Symmetries in mathematics

A common and fruitful attitude in mathematics is to study
a mathematical object (or problem) by analysing and exploiting its
natural symmetries.

In general, the following “principle” is often verified:

The complexity of a mathematical object is inversely
proportional to the amount of symmetries it has.

The “best” mathematical objects are those admitting just
enough symmetries to make them tractable without forcing
them to be too simple.

From this perspective, Algebraic Geometry is no different.

Joseph Ayoub Symmetries in algebraic geometry and motives



Symmetries in mathematics

A common and fruitful attitude in mathematics is to study
a mathematical object (or problem) by analysing and exploiting its
natural symmetries.

In general, the following “principle” is often verified:

The complexity of a mathematical object is inversely
proportional to the amount of symmetries it has.

The “best” mathematical objects are those admitting just
enough symmetries to make them tractable without forcing
them to be too simple.

From this perspective, Algebraic Geometry is no different.

Joseph Ayoub Symmetries in algebraic geometry and motives



Symmetries in mathematics

A common and fruitful attitude in mathematics is to study
a mathematical object (or problem) by analysing and exploiting its
natural symmetries.

In general, the following “principle” is often verified:

The complexity of a mathematical object is inversely
proportional to the amount of symmetries it has.

The “best” mathematical objects are those admitting just
enough symmetries to make them tractable without forcing
them to be too simple.

From this perspective, Algebraic Geometry is no different.

Joseph Ayoub Symmetries in algebraic geometry and motives



Symmetries in mathematics

A common and fruitful attitude in mathematics is to study
a mathematical object (or problem) by analysing and exploiting its
natural symmetries.

In general, the following “principle” is often verified:

The complexity of a mathematical object is inversely
proportional to the amount of symmetries it has.

The “best” mathematical objects are those admitting just
enough symmetries to make them tractable without forcing
them to be too simple.

From this perspective, Algebraic Geometry is no different.

Joseph Ayoub Symmetries in algebraic geometry and motives



A trichotomy in algebraic geometry

For the purpose of this talk, “algebraic variety” means a complex
sub-manifold of CN defined as the zero set of some polynomial
equations or, more generally, a union of such manifolds.

Given an algebraic variety X , three situations may occur:

1 X has a “moduli” of automorphisms, e.g., X = Pn.
In this case, X can be considered to be too simple.

2 X has a big “discrete” group of automorphisms, e.g., X is an
algebraic torus. This is the best case scenario!

3 X has very few automorphisms, e.g., X is a general
hypersurface in Pn of degree large enough.
In this case, X can be very complicated.

Observe the analogy with rational points on curves!
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The goal of the talk

Unfortunately, most algebraic varieties fall in the third class:
A general algebraic variety has no nontrivial symmetry.

Goal: I want to explain how the lack of symmetries in Algebraic
Geometry can lead to the invention of the notion of motive.

(Some problems in Algebraic Geometry are subject to “hidden
symmetries” that the theory of motives is expected to reveal.)

The notion of motive was introduced by Grothendieck in a letter to
Serre in 1964. But the story I want to tell is closer to the modern
approach pioneered by Voevodsky in the 90’s.

The talk will be (mostly) very very elementary...
I’ll concentrate mainly on the philosophical aspects...
Statements will be rather imprecise at the beginning and could be
misinterpreted... (Please interrupt me if needed!)
I’ll try to give some precise statements towards the end...
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Extending the concept of symmetry
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A first try

As automorphisms are rare in Algebraic Geometry, it is natural to
look for substitutes.

For instance, one may consider the endomorphisms of X .
These are maps f : X → X preserving all the structures but
with the notable difference that f may contract X onto a
strict sub-variety of X .

Unfortunately, in Algebraic Geometry endomorphisms are as rare as
automorphisms!

The non-identity endomorphisms of a general algebraic variety
tend to have a constant image, i.e., contract the whole variety
to a point.
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Outgoing and ingoing quasi-symmetries

As endomorphisms are rare in Algebraic Geometry, it is often
useful, given an algebraic variety X , to “look outside” X and
compare it with other algebraic varieties:

It is useful to consider maps from X (i.e., X → P)
and maps to X (i.e., Q → X ).

These maps constitute, what I will call today, the outgoing and
ingoing quasi-symmetries of X ; note that P and Q are unspecified
algebraic varieties. Said differently:

To study X , it can be useful to consider it as an object of
the category of algebraic varieties (or maybe a well chosen
subcategory of these).

The lack of symmetries is maybe a good explanation for the
“unreasonable omnipresence” of Category Theory in some parts
of Algebraic Geometry!
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Maps from a fixed variety (or outgoing quasi-symmetries)

Fix an algebraic variety X .

Observation

A map f : X → P is a family, parametrised by X , of solutions of
the equations defining P.

For instance, if P is the zero set in CN of a system of polynomial
equations

(S) :


p1(t1, . . . , tN) = 0,

...
pm(t1, . . . , tN) = 0,

then f is a rule which associates to every x ∈ X a solution

f (x) = (f1(x), . . . , fN(x))

of the system (S).
An important requirement is that the fi ’s are “algebraic functions”
of the variable x ∈ X .
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Maps from a fixed variety (continued)

From the previous slide, there is an equivalence between the
following data:

A (nontrivial) map f : X → P;

A system of polynomial equations admitting a (nontrivial)
family of solutions parametrised by X .

It turns out that the condition of “admitting a nontrivial family of
solutions parametrised by X” is very strong:

Observation (very imprecise)

In practice, this condition forces (S) to be a sub-system
of the system of equations defining X (e.g., the empty system)
or a system obtained from those equations by standard universal
operations.
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Maps from a fixed variety (continued)

Recapitulation

1 The existence of an interesting map f : X → P may have
strong implications on the geometry of X . This is especially
the case when P itself has an interesting geometry.

2 Unfortunately, maps from a fixed algebraic variety X are rarely
interesting. For a general X , f is an immersion or P tends to
have a boring geometry (e.g., P = Pn).

Remark

Although maps from X to simple varieties such as PN are relatively
uninteresting, they play a prominent role in Algebraic Geometry
especially in studying the global geometry of projective varieties.
But this is a different story...
Here we are interested in the local geometry of algebraic varieties...
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Maps to a fixed variety (or ingoing quasi-symmetries)

The situation is completely different for maps to X :

Indeed, it is very easy to construct maps g : Q → X where
the source is a very complicated algebraic variety.

Observation

A map g : Q → X corresponds to adding new variables and new
equations to the system of equations defining X .

Indeed, one gets g : Q → X by cutting a sub-variety Q of the
cartesian product X × CN using a system of equations

(T ) :


q1(x , t1, . . . , tN) = 0,

...
qm(x , t1, . . . , tN) = 0.

Here the qi ’s are polynomials in the variables tj ’s depending
algebraically on x ∈ X .
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Maps to a fixed variety (continued)

Example

Assume that m = N = 1 and that

q(x , t) = td + ad−1(x) · td−1 + · · ·+ a0(x)

is a monic polynomial in t with coefficients in the ring of algebraic
functions on X . In this case, f : Q → X is a finite cover of X .

Indeed, we have

Q = {(x , t) ∈ X × C | q(x , t) = 0}.
Therefore, for x0 ∈ X , f −1(x0) can be identified with the set of d
roots (counted with multiplicities) of the equation

td + ad−1(x0) · td−1 + · · ·+ a0(x0) = 0.

In particular, if q(x , t) is irreducible, f is generically a d – to – 1
map.

Joseph Ayoub Symmetries in algebraic geometry and motives



Maps to a fixed variety (continued)

Example

Assume that m = N = 1 and that

q(x , t) = td + ad−1(x) · td−1 + · · ·+ a0(x)

is a monic polynomial in t with coefficients in the ring of algebraic
functions on X . In this case, f : Q → X is a finite cover of X .

Indeed, we have

Q = {(x , t) ∈ X × C | q(x , t) = 0}.
Therefore, for x0 ∈ X , f −1(x0) can be identified with the set of d
roots (counted with multiplicities) of the equation

td + ad−1(x0) · td−1 + · · ·+ a0(x0) = 0.

In particular, if q(x , t) is irreducible, f is generically a d – to – 1
map.

Joseph Ayoub Symmetries in algebraic geometry and motives



The formalism of descent
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Recapitulation and some natural questions

Let X be a general algebraic variety.

1 X has very few symmetries (in the traditional sense) and very
few interesting endomorphisms.

2 To study X , we are often led to consider maps between X and
some other algebraic varieties (the quasi-symmetries of X ).

3 In practice, interesting maps from X are also rare.
Thus, in general, we may only rely on maps to X (the ingoing
quasi-symmetries of X ).

Thus, it is useful to develop techniques for studying X by
systematically exploiting maps of the form g : Q → X .

Questions/Problems

Classify sorts of maps g : Q → X .

Find methods to descend/transfer informations from Q to X ,
in good situations.
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Étale maps

A very prominent sort of maps g : Q → X are the so-called étale
maps.

Definition

A map of algebraic varieties g : Q → X is called étale if it induces
isomorphisms on tangent spaces at every point of Q.
This is equivalent to say that g is a local homeomorphism with
respect to the transcendental (but not the algebraic) topology.

Étaleness is easily checked on equations (Jacobian criterion).
Moreover, there is a large supply of étale maps to X .

Étale surjective maps are very well suited for descending
informations from the source (i.e., Q) to the target (i.e., X ).

The étale topology – also invented by Grothendieck – is a
powerful tool to study/perform descent along étale maps.
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Étaleness is easily checked on equations (Jacobian criterion).
Moreover, there is a large supply of étale maps to X .

Étale surjective maps are very well suited for descending
informations from the source (i.e., Q) to the target (i.e., X ).

The étale topology – also invented by Grothendieck – is a
powerful tool to study/perform descent along étale maps.
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Étaleness is easily checked on equations (Jacobian criterion).
Moreover, there is a large supply of étale maps to X .
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Descending along étale maps

Fix an algebraic variety X .
Let g : Q → X be a surjective étale map.

Definition

The Cech complex Q• associated to g is obtained by considering
the iterated fiber products:

Qn =

n+1 times︷ ︸︸ ︷
Q ×X · · · ×X Q .

Thus Qn is the set of (n + 1)-tuples (y0, . . . , yn) of points in Q
such that g(y0) = · · · = g(yn).
Partial diagonals and projections gives maps

r∗ : Qn → Qm,

one for every (increasing) function r : [[0,m]]→ [[0, n]].
This geometric-combinatorial data Q• is called a simplicial variety.
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Descending along étale maps (continued)

The Cech complex is actually a particular example of what is called
an étale hyper-cover.

This is a simplicial variety Y• together with
an augmentation Y• → X such that:

1 Y0 → X is an étale surjective map;

2 Y1 → Y0 ×X Y0 is an étale surjective map;

3 Y2 → (Y1 ×Y0 Y1)×(Y0×XY0) Y1 is an étale surjective map;

4 etc.

General Principle

Given an étale hyper-cover Y• → X , there is an equivalence
between:

1 Properties/invariants of X ;

2 Properties/invariants of the Yi ’s which are compatible with
the simplicial structure.
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Descending along étale maps (continued)

Remark 1

The previous principle is especially applicable to invariants of X of
homotopical and homological nature.

For instance, an étale hyper-cover Y• → X induces a homotopy
equivalence between X and the topological realisation of Y•.

Remark 2

In practice, the Yi ’s are much more complicated than X itself.
(This is peculiar to algebraic geometry; in differential geometry
there are hyper-covers given by disjoint unions of balls in each
simplicial degree.)
Therefore, the previous principle is only theoretical...
In practice, it is unreasonable to expect this principle to be useful...
But wait for the next slides...
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Motivic quasi-symmetries
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É-morphisms: the idea

Étale hyper-covers are rather complicated objects...
We are not particularly interested in them...

Nevertheless, here is something one may try to do with them.

1 Let X be a variety we want to study. Let W be an auxiliary
variety.
(W could be a variety that we understand well or W = X .)

2 Given an étale hyper-cover Y• → X , we may look for
interesting maps Y• →W .

3 Given such a map Y• →W , we may transfer (contravariant)
informations from W to Y• and then descend these to X .
(If W = X , this could serve as an endomorphism of X .)

4 These Zigzags from X to W are what we will call today the
é-morphisms.
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É-morphisms: more precisely

From the beginning, we were secretly interested in cohomological
invariants of algebraic varieties...

These are graded Abelian groups H∗(X ), possibly with some extra
structures, containing precious informations about the arithmetic
and geometry of X .

These invariants are contravariant in X , i.e., given a map
h : X →W , one has a homomorphism h∗ : H∗(W )→ H∗(X ).
We will need an obvious extension of this functoriality.

Observation

Given a finite family of maps h1, . . . , hm : X →W , and integers
a1, . . . , am ∈ Z, there is a map

m∑
i=1

aih
∗
i : H∗(W )→ H∗(X ).
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É-morphisms: more precisely (continued)

Definition

An é-morphism of degree d (with d ∈ N) from X to W is obtained
by specifying:

1 an étale hyper-cover Y• → X ,

2 a (formal) linear combination
∑m

i=1 ai · hi of maps
h1, . . . , hm : Yd →W such that

d+1∑
j=0

(−1)j
m∑
i=1

ai · (hi ◦ pj) = 0

where p0, . . . , pd+1 : Yd+1 → Yd are the structure maps of
the simplicial objet Y•.

An é-morphism is only defined up to an equivalence relation which
we will ignore in this talk.
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É-morphisms: more precisely (continued)

Remark (for those who know...)

É-morphisms of degree d from X to W form an Abelian group
which can be identified with the étale cohomology group

Hd
ét(X ,Zét(W )),

where Zét(W ) is the étale sheaf associated to the presheaf which
sends an étale map U → X to the Abelian group of linear
combinations of maps from U to W .

Lemma

É-morphisms of degree 0 from X to W are given by (linear
combinations of) étale correspondences, i.e., by diagrams

X
e← X ′ →W

where e is an étale finite cover of X .
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É-morphisms of degree 0 from X to W are given by (linear
combinations of) étale correspondences, i.e., by diagrams

X
e← X ′ →W

where e is an étale finite cover of X .

Joseph Ayoub Symmetries in algebraic geometry and motives



Motivic morphisms

By the previous lemma, é-morphisms are not enough.
The construction of motivic morphisms is motivated by the
following observation.

Observation

For most cohomology theories, the natural projection A1 × X → X
induces an isomorphism H∗(X ) ' H∗(A1 × X ).

Definition

The n-th algebraic simplex is defined by

∆n = {(z0, . . . , zn) ∈ Cn+1 |
∑n

i=0zi = 1}.

We set ∆n
X = ∆n × X .

Varying n, one gets a cosimplicial variety ∆•X with a
co-augmentation X → ∆•X .

Joseph Ayoub Symmetries in algebraic geometry and motives



Motivic morphisms
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Motivic morphisms (continued)

Fact

Reasonable cohomology theories admit co-descent along X → ∆•X .

This motivates the following.

Definition

A motivic morphism of degree d (with d ∈ Z) from X to W is an
é-morphism of degree d from ∆•X to W .
(Roughly speaking, this is a compatible collection of é-morphisms
of degree n + d from ∆n

X to W .)

Lemma

A motivic morphism of degree d from X to W induces a
homomorphism H∗(W )→ H∗+d(X ) for any reasonable
cohomology theory H∗.
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Motivic morphisms (continued)
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Motives

Remark

Given an algebraic variety X , one can look at the algebra of
motivic endomorphisms (of degree 0) of X .

Even if X is quite general, this algebra can be highly nontrivial!
However, constructing interesting elements is usually very difficult.

Definition

It is possible to compose motivic morphisms between algebraic
varieties (as we compose maps). Thus, algebraic varieties and
motivic morphisms form a category.

This category can be considerably enlarged by closing under
homotopy limits and colimits. (A sort of a categorical completion.)

The resulting category is denoted by DM; this is the so-called
Voevodsky’s triangulated category of mixed motives.
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Why does one care?
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Slogan

Recall that when studying a mathematical object (or problem)
it is often useful to look for symmetries; these usually have strong
consequences and lead to simplifications, etc.

Slogan (very optimistic!)

Motivic (quasi-)symmetries are the reason behind any property
which is shared by (a sufficiently rich class of) the cohomology
theories on algebraic varieties.

Reformulation

The cohomological study of algebraic varieties is a chapter of
representation theory! It is equivalent to the study of the
representations of motivic (quasi-)symmetries.

This slogan can be made into conjectures which appear very hard
nowadays. (E.g., interpreted in the right way, this slogan yields
vast generalisations of the Hodge and Tate conjectures.)
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Slogan (continued)

Here are three “qualitative statements” that are expected to hold.
1 Let X be an algebraic variety and assume that the mixed

Hodge structures on the cohomology of X is simple.
Then X has many motivic symmetries.

2 Similarly, assume that X is defined over Q and that the
absolute Galois group GQ acts on the `-adic cohomology of X
in a simple way. Then, X has also many motivic symmetries.

3 Keep assuming that X is defined over Q. Assume also that
the comparison isomorphism between singular cohomology
and algebraic de Rham cohomology is given by a matrix
whose coefficients are not too transcendental. Then, X has
also many motivic symmetries.

Note that the converses of these statements do hold and are
relatively easy. (It is only a matter of formulating things correctly!)
The main difficulty is to construct motivic morphisms (when we
expect their presence). There is no general method for doing this!

Joseph Ayoub Symmetries in algebraic geometry and motives



Slogan (continued)

Here are three “qualitative statements” that are expected to hold.
1 Let X be an algebraic variety and assume that the mixed

Hodge structures on the cohomology of X is simple.
Then X has many motivic symmetries.

2 Similarly, assume that X is defined over Q and that the
absolute Galois group GQ acts on the `-adic cohomology of X
in a simple way. Then, X has also many motivic symmetries.

3 Keep assuming that X is defined over Q. Assume also that
the comparison isomorphism between singular cohomology
and algebraic de Rham cohomology is given by a matrix
whose coefficients are not too transcendental. Then, X has
also many motivic symmetries.

Note that the converses of these statements do hold and are
relatively easy. (It is only a matter of formulating things correctly!)
The main difficulty is to construct motivic morphisms (when we
expect their presence). There is no general method for doing this!

Joseph Ayoub Symmetries in algebraic geometry and motives



Slogan (continued)

Here are three “qualitative statements” that are expected to hold.
1 Let X be an algebraic variety and assume that the mixed

Hodge structures on the cohomology of X is simple.
Then X has many motivic symmetries.

2 Similarly, assume that X is defined over Q and that the
absolute Galois group GQ acts on the `-adic cohomology of X
in a simple way. Then, X has also many motivic symmetries.

3 Keep assuming that X is defined over Q. Assume also that
the comparison isomorphism between singular cohomology
and algebraic de Rham cohomology is given by a matrix
whose coefficients are not too transcendental. Then, X has
also many motivic symmetries.

Note that the converses of these statements do hold and are
relatively easy. (It is only a matter of formulating things correctly!)
The main difficulty is to construct motivic morphisms (when we
expect their presence). There is no general method for doing this!

Joseph Ayoub Symmetries in algebraic geometry and motives



Slogan (continued)

Here are three “qualitative statements” that are expected to hold.
1 Let X be an algebraic variety and assume that the mixed

Hodge structures on the cohomology of X is simple.
Then X has many motivic symmetries.

2 Similarly, assume that X is defined over Q and that the
absolute Galois group GQ acts on the `-adic cohomology of X
in a simple way. Then, X has also many motivic symmetries.

3 Keep assuming that X is defined over Q. Assume also that
the comparison isomorphism between singular cohomology
and algebraic de Rham cohomology is given by a matrix
whose coefficients are not too transcendental. Then, X has
also many motivic symmetries.

Note that the converses of these statements do hold and are
relatively easy. (It is only a matter of formulating things correctly!)
The main difficulty is to construct motivic morphisms (when we
expect their presence). There is no general method for doing this!

Joseph Ayoub Symmetries in algebraic geometry and motives



Can one understand motivic morphisms?

The notion of motivic morphisms looks pretty crazy and it is
unclear how to understand these concretely.

Surprisingly, it is possible in theory to write down the groups of
motivic morphisms in terms of algebraic cycles.
In practice this can be very hard, but there are some important
special cases where things are easy.

1 If X and Y are smooth proper varieties, then motivic
morphisms of degree 0 from X to Y are given by algebraic
cycles in X × Y of dimension dim(X ) up to rational
equivalence, i.e., by the Chow group CHdim(X )(X × Y ).

2 If X is smooth, motivic morphisms from X to Pn of degree 0
are given by algebraic cycles of codimension n in X up to
rational equivalence, i.e., by the Chow group CHn(X ).

This is very nice, but rather useless... Indeed, it is well known that
constructing interesting algebraic cycles is also very hard.
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Some applications
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The Milnor-Bloch-Kato conjecture

Fact

At present, it can be said that the theory of motives consists of
more conjectures than theorems and applications.
Certainly, the big conjectures of the field, dating back to the 60’s,
are still untouched.

Nevertheless, there had been some advances during the past 20
years. The most spectacular one is the solution by Voevodsky and
Rost of the Milnor-Bloch-Kato conjecture.

Theorem (Voevodsky-Rost)

Let k be a field containing the n-th roots of unity (with n prime to
the characteristic). Let G be the absolute Galois group of k.
Then H∗(G ,Z/nZ) is isomorphic to the tensor Z/nZ-algebra on
k×/(k×)n modulo the two sided ideal generated by the tenors
a⊗ (1− a) for a ∈ k× r {1}.
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The work of Brown on multi-zetas

A more recent remarkable application of motivic ideas and
techniques is due to F. Brown. He proved a conjecture of Hoffman
on multiple zeta values:

ζ(n1, . . . , nr ) =
∑

0<k1<···<kr

1

kn1
1 · · · k

nr
r

with ni ≥ 1, nr ≥ 2.

Theorem (Brown)

Every multiple zeta value is a Q-linear combination of
ζ(n1, . . . , nr ) where ni ∈ {2, 3}.

One of the main ingredients of the proof is a precise understanding
of motivic morphisms between the so-called mixed Tate motives
over Q. (This understanding is a consequence of Borel’s
computation of algebraic K -theory of Z.)
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On the Kontsevich-Zagier conjecture

Recall that a period, in the sense of Kontsevich-Zagier, is a value
of the pairing

HSing
n (X ,Z )⊗ Hn

DR(X ,Z ) → C
γ ⊗ ω 7→

∫
γ ω

where:

X is an algebraic varieties defined over Q,

Z ⊂ X is a closed sub-variety also defined over Q,

HSing
n (X ,Z ) is relative singular homology (a Q-vector space),

Hn
DR(X ,Z ) is relative algebraic de Rham cohomology (also a

Q-vector space).

Kontsevich-Zagier Conjecture

Q-linear relations between periods are produced by the usual rules
of integration (i.e., change of variables and Stokes formula).
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On the Kontsevich-Zagier conjecture (continued)

Using motivic techniques, it is possible to reformulate the
conjecture of Kontsevich-Zagier more concretely as follows.

Notation

Let Oalg (D̄∞) be the algebra of holomorphic functions on the unit
polydisc in a finite (but unspecified) numbers of variables
t1, . . . , tn, . . . , which are algebraic over the field of rational
functions Q(t1, . . . , tn, . . . ).

The following conjecture is equivalent to the previous one.

Conjecture

The kernel of the integration on [0, 1]∞:∫
� : Oalg (D̄∞)→ C

is generated by elements of the form ∂g
∂ti
− g |ti=1 + g |ti=0.
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On the Kontsevich-Zagier conjecture (continued)

The previous conjecture is totally out of reach. It is of
“arithmetic” nature.

One can formulate a “geometric” version of this conjecture by
replacing:

Q by C($),

Oalg (D̄∞) by the ring O†alg (D̄∞) consisting of formal power

series
∑

i>>−∞ fi (t1, . . . , tn) ·$i with fi ∈ O(D̄n) and which
are algebraic over C($, t1, . . . , tn).

Interestingly, present motivic techniques are enough for proving the
geometric version!
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The end! Thank you
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