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1. Complex tori
•A lattice L ⊂ Cg is a subgroup L = Zω1 ⊕ · · · ⊕ Zω2g

∼= Z2g ,
where the ωi are linearly independent over R.
•We study complex tori X = Cg/L.
•Here is a picture when g = 1 and L = Zω1 ⊕ Zω2.
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2. Meromorphic functions on a complex torus
•When g = 1 and L = Zω1 ⊕ Zω2. there are many meromorphic
functions on C/L — these are the same as meromorphic functions
on C that are periodic with respect to L.
•For example, for d ≥ 3, the function fd(z) =

∑
ℓ∈L(z − ℓ)−d

converges and is periodic, with a pole of order d at each lattice
point. This corresponds to a meromorphic function fd on C/L with
a pole at 0.
•A slight modification produces a convergent f2, also known as the
Weierstrass ℘ function. Then ℘′ = −2f3; similarly for all fd .
•Fact: all meromorphic functions on C/L are rational functions of
℘ and ℘′. There is also a relation (℘′)2 = 4℘3 + α℘+ β, with
constants α, β ∈ C (which are determined by L).
•However, when g ≥ 2, for “most” L ⊂ Cg there are NO
nonconstant meromorphic functions on Cg/L. Only for special L
do “enough” meromorphic functions exist.
•The essential reason: poles of a meromorphic function occur on
analytic subsets of Cg/L of dimension g − 1. For example, why
should there be any complex curves on C2/L?



3. Motivating line bundles

•A different approach to finding meromorphic functions
f : Cg → C that are periodic with respect to L is to realize them
as quotients f (z) = s(z)/t(z), where s and t are holomorphic
quasi-periodic functions, that satisfy
s(z + ℓ) = aℓ(z)s(z), t(z + ℓ) = aℓ(z)t(z), ∀ℓ ∈ L.

Here the aℓ(z) are a family of holomorphic functions, that need to
satisfy the cocycle condition aℓ+ℓ′(z) = aℓ(z + ℓ′)aℓ′(z).
•Since a0(z) = 1, the aℓ(z) are never zero. Replacing both s(z)
and t(z) by g(z)s(z) and g(z)t(z) does not change f , but changes
the aℓ by a coboundary (in an appropriate cohomology group).
•In fancy language: A choice of family aℓ(z) (up to coboundary)
describes a holomorphic line bundle L on Cg/L, and then the
functions s(z), t(z) are sections of L. For a given p ∈ Cg/L
represented by z ∈ Cg , the values s(p), t(p) belong to the fiber
Lp, which is a one-dimensional complex vector space that varies
nicely (“holomorphically”) with p. The ratio s(p)/t(p), when
t(p) ̸= 0, is a well-defined complex number.



4. Theta functions

•For those unfamiliar with line bundles: This talk will mainly
express things in terms of aℓ and the relation s(z + ℓ) = aℓ(z)s(z).
•Fact: up to coboundaries, the family aℓ for our complex torus can
be of a very specific form, exponentials of linear functions. So
aℓ(z) = e(Aℓ · z + Bℓ), where Aℓ ∈ Cg and Bℓ ∈ C. Here
e(c) = exp(2πic), and we view elements of Cg as column vectors;
then v · w = tvw , the usual (nonhermitian) bilinear form.
•Fact: there are “enough” meromorphic functions on Cg/L if and
only if up to changing coordinates on Cg , the lattice L is equal to
(in reality, contains) the lattice Zg ⊕ ΩZg , where Ω ∈ Mg (C) is a
symmetric complex matrix with Im Ω positive definite.
•In the above situation, for each k ≥ 1 we can consider the
distinguished family akℓ that corresponds to functions s that satisfy

s(z + n) = s(z), ∀n ∈ Zg ,
s(z +Ωm) = e(−km · Ωm/2− km · z)s(z), ∀m ∈ Zg .

•Functions s as above are called theta functions of weight k ; the
space of such theta functions has dimension kg .



5. Meromorphic functions and projective embeddings
•The space of weight k theta functions:

s(z + n) = s(z), s(z +Ωm) = e(−km · Ωm/2− km · z)s(z).
•A basis for the space of weight k theta functions is

θk,c =
∑

n≡c mod kZg

e(n · Ωn/2k + n · z)), for c ∈ Zg/kZg .

•Fact: every meromorphic function on Cg/L is a ratio of two theta
functions for all large k (depending on the function in question).
•For k ≥ 3, the space of theta functions gives algebraic
coordinates on Cg/L, more precisely an embedding of Cg/L into
the projective space Pkg−1, given by sending z to the projective
point [θk,0(z) : · · · : θk,c(z) : · · · ] ∈ Pkg−1.
•Here PN is the quotient of CN+1 − {0} by the equivalence
relation (x0, · · · , xN) ∼ (λx0, · · · , λxN) for λ ∈ C∗. The
equivalence classes are written [x0 : · · · : xN ].
•When g = 1 and k = 3, we have a 3-dimensional space of theta
functions, and there exists a basis {s0, s1, s2} giving essentially
z 7→ [x0 : x1 : x2] = [s0(z) : s1(z) : s2(z)] = [1 : ℘(z) : ℘′(z)] with
equation x22x0 = 4x31 + αx1x

2
0 + βx30 ⇐⇒ (℘′)2 = 4℘3 + α℘+ β.



6. More on maps to projective space
•For k = 3, the map given by theta functions of weight k embeds
Cg/L to projective space as a projective variety given by
polynomials of degrees 2 and 3.
•For k ≥ 4, we only need polynomials of degree 2.
•When g = 1, the weight 4 embedding amounts to two degree 2
polynomial equations on P3 (i.e., in 4 variables). The weight 3
embedding is the usual cubic model of an elliptic curve in P2.
•When g = 2, the weight 4 embedding is “cleaner” and more
symmetric than the weight 3 embedding. However it requires 72
degree 2 equations on P15 (i.e., in 16 variables).
•The theta functions of weight 2 do not embed the complex torus,
but they do map the quotient space (Cg/L)/[±1] to projective
space. Thus quotient space is called the Kummer variety.
•When g = 1, the weight 2 theta functions give the map from an
elliptic curve to P1 given by ℘ (i.e., the x-coordinate on the cubic).
•When g = 2, the weight 2 theta functions usually embed the
Kummer variety as a surface in P3 given by a single equation in
degree 4.



7. The Edwards model
•We search for other usable algebraic models of Cg/L. One can
combine different maps from theta functions (and their translates)
to embed Cg/L into a product of projective spaces.
•Specifically, consider the Kummer map κ : Cg/L → P2g−1 given
by the weight 2 theta functions, and suppose we are in the usual
situation where κ(p) = κ(q) ⇐⇒ p = ±q.
•Fix a point p0 ∈ Cg/L with 2p0 ̸= 0. Then the map

p 7→ (κ(p), κ(p + p0)) ∈ P2g−1 × P2g−1

is an embedding. We will primarily use a point p0 of order 4.
•When g = 1, this embeds an elliptic curve into P1 × P1 in what
is called the Edwards model. It is particularly convenient for
computations over finite fields, used in cryptographic applications
and elsewhere. The (inhomogeneous) equation of the Edwards
model can be written as Y 2 + U2 = 1 + dU2Y 2; if d is not a
square over the ground field K , this curve does not have rational
points at infinity, so one can work entirely over K 2 without needing
to pass to the projective plane over K . The group law operations
also look more uniform than in the usual cubic model.



8. Generalization to g = 2
•This is joint work with E. V. Flynn. See arxiv:2211.01450.
•The Kummer map κ : C2/L → P3 gives rise (usually) to an
embedding in P3 × P3, so using 8 variables (or just 6 if we can
avoid points at infinity).
•The resulting image is described by explicit equations of the
following types:
▶ One equation in each bidegree (4, 0) and (0, 4) (the Kummer

quartics in each P3),
▶ Four equations in each bidegree (2, 1) and (1, 2),
▶ Five more elements of bidegree (2, 2).

•The total number of equations is thus 15. This is much more
tractable than previous models with 72 equations in 16 variables.
•The model works over any field that is not of characteristic 2, for
the Jacobian of a curve of genus 2 with certain rationality
conditions and a Richelot isogeny to the Jacobian of another curve
of genus 2.
•We give a nice version of the group law and can give cases where
there are no “points at infinity”.



9. Thank you for your attention!
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